Part 6c of a six part series covering the fundamentals of magnetic resonance imaging physics. This final section covers a recap of the previous five sessions and covers advanced imaging sequences and their application. Click here to view Part 6a, Part 6b or Part 1a.
Terms covered in Part 6:
Part 5c of a six part series covering the fundamentals of magnetic resonance imaging physics. In this section, Dr. Stafford applies the underlying physics to describe the basics of MR pulse sequences. Click here to view Part 5a , Part 5b or Part 1a.
Terms covered in Part 5:
Part 5b of a six part series covering the fundamentals of magnetic resonance imaging physics. In this section, Dr. Stafford applies the underlying physics to describe the basics of MR pulse sequences. Click here to view Part 5a , Part 5c or Part 1a.
Terms covered in Part 5:
Part 5a of a six part series covering the fundamentals of magnetic resonance imaging physics. In this section, Dr. Stafford applies the underlying physics to describe the basics of MR pulse sequences. Click here to view Part 5b or Part 1a.
Terms covered in Part 5:
Part 4a of a six part series covering the fundamentals of magnetic resonance imaging physics. In this ambitious piece, Dr. Stafford introduces the complex concept of k-Space. Click here to view Part 4b or Part 1a.
Terms covered in Part 4:
Part 3b of a six part series covering the fundamentals of magnetic resonance imaging physics. In this section, Dr. Stafford expands on the concepts of gradients and echoes. Click here to view Part 3a or Part 1a.
Terms covered in Part 3:
Part 3a of a six part series covering the fundamentals of magnetic resonance imaging physics. In this section, Dr. Stafford expands on the concepts of gradients and echoes. Click here to view Part 3b or Part 1a.
Terms covered in Part 3:
The effects of coronary artery diseases on the macrovasculature of the heart have been extensively studied, in contrast to the limited knowledge of effects seen in the microvasculature. As symtoms in the small vessels are an early warning sign of coronary artery disease, slowing or halting progression of these symptoms through improved diagnosis is the aim of the presented research. Dr. Robert deKemp is adapting PET imaging's stress over rest flow reserve, an established method in evaluating macrovasculature, to study the microvasculature. He presents his lab's translational micro-PET evalutaion of mice to determine effects of various stressors to eventually improve diagnostic procedures in humans and pre-clinically evaluate new therepeutic drugs.
Part 2b of a six part series covering the fundamentals of magnetic resonance imaging physics. In this section, Dr. Stafford introduces concepts of relaxation and image contrast. Click here to view Part 2a or Part 1a.
Terms covered in Part 2:
Part 2a of a six part series covering the fundamentals of magnetic resonance imaging physics. In this section, Dr. Stafford introduces concepts of relaxation and image contrast. Click here to view Part 1a or Part 2b.
Terms covered in Part 2: